Optomechanical dissipative solitons | Nature

  • 1.

    Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 2.

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 3.

    Haus, H. A. & Wong, W. S. Solitons in optical communications. Rev. Mod. Phys. 68, 423–444 (1996).

    ADS 

    Google Scholar 

  • 4.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 5.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    CAS 
    ADS 

    Google Scholar 

  • 6.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    PubMed 

    Google Scholar 

  • 7.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar 

  • 8.

    Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 9.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 10.

    Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. J. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    CAS 
    ADS 

    Google Scholar 

  • 11.

    Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).

    CAS 
    ADS 

    Google Scholar 

  • 12.

    Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2020).

    CAS 

    Google Scholar 

  • 13.

    Yamazaki, R. et al. Radio-frequency-to-optical conversion using acoustic and optical whispering-gallery modes. Phys. Rev. A 101, 053839 (2020).

    CAS 
    ADS 

    Google Scholar 

  • 14.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS 

    Google Scholar 

  • 15.

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 16.

    LIGO Scientific Collaboration and Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    MathSciNet 
    ADS 

    Google Scholar 

  • 17.

    Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    PubMed 
    ADS 

    Google Scholar 

  • 18.

    Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 19.

    Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).

    CAS 
    ADS 

    Google Scholar 

  • 20.

    Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled onchip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).

    PubMed 
    ADS 

    Google Scholar 

  • 21.

    Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016).

    CAS 
    ADS 

    Google Scholar 

  • 22.

    Gan, J.-H., Xiong, H., Si, L.-G., Lü, X.-Y. & Wu, Y. Solitons in optomechanical arrays. Opt. Lett. 41, 2676–2679 (2016).

    PubMed 
    ADS 

    Google Scholar 

  • 23.

    Xiong, H., Gan, J. H. & Wu, Y. Kuznetsov–Ma soliton dynamics based on the mechanical effect of light. Phys. Rev. Lett. 119, 153901 (2017).

    PubMed 
    ADS 

    Google Scholar 

  • 24.

    Xiong, H. & Wu, Y. Optomechanical Akhmediev breathers. Laser Photon. Rev. 12, 1700305 (2018).

    ADS 

    Google Scholar 

  • 25.

    Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via intrinsic three-wave mixing. Phys. Rev. Lett. 118, 033903 (2017).

    PubMed 
    ADS 

    Google Scholar 

  • 26.

    Butsch, A., Koehler, J. R., Noskov, R. E. & Russell, P. St. J. CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber. Optica 1, 158–163 (2014).

    ADS 

    Google Scholar 

  • 27.

    Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Seidel, D. & Maleki, L. Surface acoustic wave opto-mechanical oscillator and frequency comb generator. Opt. Lett. 36, 3338–3340 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 28.

    Miri, M.-A., D’Aguanno, G. & Alù, A. Optomechanical frequency combs. New J. Phys. 20, 043013 (2018).

    ADS 

    Google Scholar 

  • 29.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    PubMed 
    ADS 

    Google Scholar 

  • 30.

    Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    PubMed 
    ADS 

    Google Scholar 

  • 31.

    Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G. & Schwefel, H. G. L. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019); correction 569, E11 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 32.

    Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 33.

    Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 34.

    Cao, L. S., Qi, D. X., Peng, R. W., Wang, M. & Schmelcher, P. Phononic frequency combs through nonlinear resonances. Phys. Rev. Lett. 112, 075505 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 35.

    Czaplewski, D. A. et al. Bifurcation generated mechanical frequency comb. Phys. Rev. Lett. 121, 244302 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 36.

    Hao, H. Y. & Maris, H. J. Experiments with acoustic solitons in crystalline solids. Phys. Rev. B 64, 064302 (2001).

    ADS 

    Google Scholar 

  • 37.

    Hereman, W. Shallow water waves and solitary waves. In Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) 480 (Springer, 2009); https://doi.org/10.1007/978-0-387-30440-3_480.

  • 38.

    Barland, S. et al. Temporal localized structures in optical resonators. Adv. Phys. X 2, 496–517 (2017).

    CAS 

    Google Scholar 

  • 39.

    Lugiato, L., Prati, F. & Brambilla, M. Nonlinear Optical Systems (Cambridge Univ. Press, 2015).

  • 40.

    Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photon. 7, 657–663 (2013).

    CAS 
    ADS 

    Google Scholar 

  • 41.

    Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 42.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    CAS 
    ADS 

    Google Scholar 

  • 43.

    Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

    CAS 
    ADS 

    Google Scholar 

  • 44.

    Korteweg, D. J. & de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895).

    MathSciNet 
    MATH 

    Google Scholar 

  • 45.

    Boyd, J. P. The double cnoidal wave of the Korteweg–de Vries equation: an overview. J. Math. Phys. 25, 3390–3401 (1984).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar 

  • 46.

    Nayanov, V. I. Surface acoustic cnoidal waves and solitons in a LiNbO3-(SiO film) structure. JETP Lett. 44, 314–317 (1986); translated from Pis’ma Zh. Eksp. Teor. Fiz. 44, 245–247 (1986).

    ADS 

    Google Scholar 

  • 47.

    Fiore, V. et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011).

    PubMed 
    ADS 

    Google Scholar 

  • 48.

    Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

    PubMed 
    ADS 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.