Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).
Google Scholar
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
Google Scholar
Haus, H. A. & Wong, W. S. Solitons in optical communications. Rev. Mod. Phys. 68, 423–444 (1996).
Google Scholar
Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).
Google Scholar
Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).
Google Scholar
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
Google Scholar
Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).
Google Scholar
Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).
Google Scholar
Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).
Google Scholar
Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. J. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).
Google Scholar
Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).
Google Scholar
Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2020).
Google Scholar
Yamazaki, R. et al. Radio-frequency-to-optical conversion using acoustic and optical whispering-gallery modes. Phys. Rev. A 101, 053839 (2020).
Google Scholar
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Google Scholar
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
Google Scholar
LIGO Scientific Collaboration and Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Google Scholar
Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).
Google Scholar
Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).
Google Scholar
Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).
Google Scholar
Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled onchip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).
Google Scholar
Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016).
Google Scholar
Gan, J.-H., Xiong, H., Si, L.-G., Lü, X.-Y. & Wu, Y. Solitons in optomechanical arrays. Opt. Lett. 41, 2676–2679 (2016).
Google Scholar
Xiong, H., Gan, J. H. & Wu, Y. Kuznetsov–Ma soliton dynamics based on the mechanical effect of light. Phys. Rev. Lett. 119, 153901 (2017).
Google Scholar
Xiong, H. & Wu, Y. Optomechanical Akhmediev breathers. Laser Photon. Rev. 12, 1700305 (2018).
Google Scholar
Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via intrinsic three-wave mixing. Phys. Rev. Lett. 118, 033903 (2017).
Google Scholar
Butsch, A., Koehler, J. R., Noskov, R. E. & Russell, P. St. J. CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber. Optica 1, 158–163 (2014).
Google Scholar
Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Seidel, D. & Maleki, L. Surface acoustic wave opto-mechanical oscillator and frequency comb generator. Opt. Lett. 36, 3338–3340 (2011).
Google Scholar
Miri, M.-A., D’Aguanno, G. & Alù, A. Optomechanical frequency combs. New J. Phys. 20, 043013 (2018).
Google Scholar
Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).
Google Scholar
Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).
Google Scholar
Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G. & Schwefel, H. G. L. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019); correction 569, E11 (2019).
Google Scholar
Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).
Google Scholar
Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).
Google Scholar
Cao, L. S., Qi, D. X., Peng, R. W., Wang, M. & Schmelcher, P. Phononic frequency combs through nonlinear resonances. Phys. Rev. Lett. 112, 075505 (2014).
Google Scholar
Czaplewski, D. A. et al. Bifurcation generated mechanical frequency comb. Phys. Rev. Lett. 121, 244302 (2018).
Google Scholar
Hao, H. Y. & Maris, H. J. Experiments with acoustic solitons in crystalline solids. Phys. Rev. B 64, 064302 (2001).
Google Scholar
Hereman, W. Shallow water waves and solitary waves. In Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) 480 (Springer, 2009); https://doi.org/10.1007/978-0-387-30440-3_480.
Barland, S. et al. Temporal localized structures in optical resonators. Adv. Phys. X 2, 496–517 (2017).
Google Scholar
Lugiato, L., Prati, F. & Brambilla, M. Nonlinear Optical Systems (Cambridge Univ. Press, 2015).
Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photon. 7, 657–663 (2013).
Google Scholar
Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).
Google Scholar
Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).
Google Scholar
Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).
Google Scholar
Korteweg, D. J. & de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895).
Google Scholar
Boyd, J. P. The double cnoidal wave of the Korteweg–de Vries equation: an overview. J. Math. Phys. 25, 3390–3401 (1984).
Google Scholar
Nayanov, V. I. Surface acoustic cnoidal waves and solitons in a LiNbO3-(SiO film) structure. JETP Lett. 44, 314–317 (1986); translated from Pis’ma Zh. Eksp. Teor. Fiz. 44, 245–247 (1986).
Google Scholar
Fiore, V. et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011).
Google Scholar
Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).
Google Scholar