Reply to: Non-trivial role of internal climate feedback on interglacial temperature evolution

  • 1.

    Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature https://doi.org/10.1038/s41586-021-03930-4 (2021).

  • 2.

    Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past https://doi.org/10.5194/cp-2019-168 (2020).

  • 7.

    Leduc, G., Schneider, R., Kim, J.-H. & Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev. 29, 989–1004 (2010).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber-Mg/Ca in the equatorial Pacific. Paleoceanogr. Paleoclimatol. 29, 680–696 (2014).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Mohtadi, M. et al. Low-latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java: a sediment trap study. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2008PA001636 (2009).

  • 10.

    Lin, H.-L., Wang, W.-C. & Hung, G.-W. Seasonal variation of planktonic foraminiferal isotopic composition from sediment traps in the South China Sea. Mar. Micropaleontol. 53, 447–460 (2004).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Sautter, L. R. & Thunell, R. C. Seasonal variability in the δ18O and δ13C of planktonic foraminifera from an upwelling environment: sediment trap results from the San Pedro Basin, Southern California Bight. Paleoceanogr. Paleoclimatol. 6, 307–334 (1991).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Thunell, R. C. & Reynolds, L. A. Sedimentation of planktonic foraminifera: seasonal changes in species flux in the Panama Basin. Micropaleontology 30, 243–262 (1984).

    Article 

    Google Scholar 

  • 13.

    Sawada, K., Handa, N. & Nakatsuka, T. Production and transport of long-chain alkenones and alkyl alkenoates in a sea water column in the northwestern Pacific off central Japan. Mar. Chem. 59, 219–234 (1998).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Sikes, E. L., O’Leary, T., Nodder, S. D. & Volkman, J. K. Alkenone temperature records and biomarker flux at the subtropical front on the chatham rise, SW Pacific Ocean. Deep Sea Res. I 52, 721–748 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Kienast, M. et al. Alkenone unsaturation in surface sediments from the eastern equatorial Pacific: implications for SST reconstructions. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2011PA002254 (2012).

  • 16.

    Hertzberg, J. E. & Schmidt, M. W. Refining Globigerinoides ruber Mg/Ca paleothermometry in the Atlantic Ocean. Earth Planet. Sci. Lett. 383, 123–133 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Malmierca-Vallet, I. et al. Simulating the Last Interglacial Greenland stable water isotope peak: the role of Arctic sea ice changes. Quat. Sci. Rev. 198, 1–14 (2018).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2004pa001071 (2005).

  • 21.

    Shackleton, S. et al. Global ocean heat content in the Last Interglacial. Nat. Geosci. 13, 77–81 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Rosenthal, Y., Linsley, B. K. & Oppo, D. W. Pacific Ocean heat content during the past 10,000 years. Science 342, 617–621 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *