In situ Raman spectroscopy reveals the structure and dissociation of interfacial water

  • 1.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article 

    Google Scholar 

  • 2.

    Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 3.

    Guo, J. et al. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 13, 184−189 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 4.

    Vidal-Iglesias, F. J., Solla-Gullon, J., Herrero, E., Aldaz, A. & Feliu, J. M. Pd adatom decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation. Angew. Chem. Int. Ed. 49, 6998–7001 (2010).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Strmcnik, D. et al. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2, 880–885 (2010).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Kendrick, E., Kendrick, J., Knight, K. S., Islam, M. S. & Slater, P. R. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871–875 (2007).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Velasco-Velez, J. J. et al, The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346, 831–834 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 9.

    Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 10.

    Wang, X., Xu, C., Jaroniec, M., Zheng, Y. & Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 4876 (2019).

    Article 
    ADS 

    Google Scholar 

  • 11.

    Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 12.

    Guha, A., Narayanaru, S. & Narayanan, T. N. Tuning the hydrogen evolution reaction on metals by lithium salt. ACS Appl. Energy Mater. 1, 7116–7122 (2018).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Guha, A., Kaley, N. M., Mondal, J. & Narayanan, T. N. Engineering the hydrogen evolution reaction of transition metals: effect of Li ions. J. Mater. Chem. A 8, 15795–15808 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Ataka, K., Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672, (1996).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Yamakata, A. & Osawa, M. Destruction of the hydration shell around tetraalkylammonium ions at the electrochemical interface. J. Am. Chem. Soc. 131, 6892–6893, (2009).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Tong, Y., Lapointe, F., Thamer, M., Wolf, M. & Campen, R. K. Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem. Int. Ed. 56, 4211–4214 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Liu, W. T. & Shen, Y. R. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. Proc. Natl Acad. Sci. USA 111, 1293–1297 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 18.

    Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 19.

    Dong, J. C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 20.

    Davis, J. G., Gierszal, K. P., Wang, P. & Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 21.

    Chen, Y. X., Zou, S. Z., Huang, K. Q. & Tian, Z. Q. SERS studies of electrode/electrolyte interfacial water part II–librations of water correlated to hydrogen evolution reaction. J. Raman Spectrosc. 29, 749–756 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 22.

    Toney, M. F. et al. Voltage-dependent ordering of water molecules at an electrode-electrolyte interface. Nature 368, 444–446 (1994).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 23.

    Senior, W. A. & Thompson, W. K. Assignment of the infra-red and Raman bands of liquid water. Nature 205, 170 (1965).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 24.

    Chen, H. C. et al. Active and stable liquid water innovatively prepared using resonantly illuminated gold nanoparticles. ACS Nano 8, 2704–2713 (2014).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 26.

    Lambert, D. K. Vibrational Stark effect of adsorbates at electrochemical interfaces. Electrochim. Acta 41, 623–630 (1996).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Li, J. F. et al. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles. Phys. Chem. Chem. Phys. 12, 2493–2502 (2010).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 29.

    Kibler, L. A. Hydrogen electrocatalysis. ChemPhysChem 7, 985–991 (2006).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 31.

    Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article 
    ADS 

    Google Scholar 

  • 32.

    Tonigold, K. & Gross, A. Dispersive interactions in water bilayers at metallic surfaces: a comparison of the PBE and RPBE functional including semiempirical dispersion corrections. J. Comput. Chem. 33, 695–701 (2012).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Sakong, S., Forster-Tonigold, K. & Gross, A. The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. J. Chem. Phys. 144, 194701 (2016).

    Article 
    ADS 

    Google Scholar 

  • 34.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.