Activation of homologous recombination in G1 preserves centromeric integrity

  • 1.

    Barra, V. & Fachinetti, D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9, 4340 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17, 16–29 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Martinez-A, C. & van Wely, K. H. M. Centromere fission, not telomere erosion, triggers chromosomal instability in human carcinomas. Carcinogenesis 32, 796–803 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 5497–5508 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Orthwein, A. et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422–426 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Cheeseman, I. M. The kinetochore. Cold Spring Harb. Perspect. Biol. 6, a015826 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Thompson, S. L., Bakhoum, S. F. & Compton, D. A. Mechanisms of chromosomal instability. Curr. Biol. 20, R285–R295 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Beh, T. T. & Kalitsis, P. in Centromeres and Kinetochores (ed. Black, B. E.) vol. 56, 541–554 (Springer, 2017).

  • 9.

    Padilla-Nash, H. M. et al. Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms: Jumping Translocations in Solid Tumors. Genes. Chromosomes Cancer 30, 349–363 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Mitelman, F., Mertens, F. & Johansson, B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat. Genet. 15, 417–474 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Tsouroula, K. et al. Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Mol. Cell 63, 293–305 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Hédouin, S., Grillo, G., Ivkovic, I., Velasco, G. & Francastel, C. CENP-A chromatin disassembly in stressed and senescent murine cells. Sci. Rep. 7, (2017).

  • 13.

    Quénet, D. & Dalal, Y. A long non-coding RNA is required for targeting centromeric protein A to the human centromere. eLife 3, (2014).

  • 14.

    Molina, O. et al. Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance. Nat. Commun. 7, 13334 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Bergmann, J. H. et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore: H3K4me2 and kinetochore maintenance. EMBO J. 30, 328–340 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Nguyen, H. D. et al. Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1. Mol. Cell 65, 832–847.e4 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Hatchi, E. et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57, 636–647 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Castellano-Pozo, M. et al. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol. Cell 52, 583–590 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Kabeche, L., Nguyen, H. D., Buisson, R. & Zou, L. A mitosis-specific and R loop–driven ATR pathway promotes faithful chromosome segregation. Science 359, 108–114 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Ouyang, J. et al. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 594, 283–288 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Liu, S. et al. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell 184, 1314-1329.e10 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Ohle, C. et al. Transient RNA–DNA hybrids are required for efficient double-strand break repair. Cell 167, 1001–1013.e7 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Wang, Y., Li, X. & Hu, H. H3K4me2 reliably defines transcription factor binding regions in different cells. Genomics 103, 222–228 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Rothkamm, K., Krüger, I., Thompson, L. H. & Löbrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23, 5706–5715 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Foltz, D. R. et al. Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 9, 675–682 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Barnhart, M. C. et al. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Akimov, V. et al. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat. Struct. Mol. Biol. 25, 631–640 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Niikura, Y. et al. CENP-A K124 ubiquitylation is required for CENP-A deposition at the centromere. Dev. Cell 32, 589–603 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Bodor, D. L., Rodríguez, M. G., Moreno, N. & Jansen, L. E. T. in Current Protocols in Cell Biology (eds Bonifacino, J. S. et al.) cb0808s55 (John Wiley & Sons, 2012).

  • 33.

    Zeitlin, S. G. et al. Double-strand DNA breaks recruit the centromeric histone CENP-A. Proc. Natl Acad. Sci. USA 106, 15762–15767 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Read, L. R. Gene repeat expansion and contraction by spontaneous intrachromosomal homologous recombination in mammalian cells. Nucleic Acids Res. 32, 1184–1196 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Khristich, A. N. & Mirkin, S. M. On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J. Biol. Chem. 295, 4134–4170 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Zhang, Y. & Jasin, M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 18, 80–84 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Zhou, J. et al. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat. Cancer 2, 598–610 (2021).

    PubMed 

    Google Scholar 

  • 38.

    van Sluis, M. & McStay, B. A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev. 29, 1151–1163 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Vydzhak, O., Luke, B. & Schindler, N. Non-coding RNAs at the eukaryotic rDNA locus: RNA–DNA hybrids and beyond. J. Mol. Biol. 432, 4287–4304 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Abraham, K. J. et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature 585, 298–302 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Feretzaki, M. et al. RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. Nature 587, 303–308 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Giunta, S. et al. CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy. Proc. Natl Acad. Sci. USA 118, e2015634118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Mishra, P. K. et al. R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast. Mol. Biol. Cell 32, 74–89 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Ortega, P., Mérida-Cerro, J. A., Rondón, A. G., Gómez-González, B. & Aguilera, A. DNA–RNA hybrids at DSBs interfere with repair by homologous recombination. eLife 10, e69881 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Marnef, A. & Legube, G. R-loops as Janus-faced modulators of DNA repair. Nat. Cell Biol. 23, 305–313 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Nakamura, K. et al. Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe. EMBO J. 27, 3036–3046 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    McFarlane, R. J. & Humphrey, T. C. A role for recombination in centromere function. Trends Genet. 26, 209–213 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Lacoste, N. et al. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol. Cell 53, 631–644 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Jeffery, D. et al. CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. Commun. Biol. 4, 417 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Giunta, S. & Funabiki, H. Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T. Proc. Natl Acad. Sci. USA 114, 1928–1933 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Mateos-Gomez, P. A. et al. The helicase domain of Polθ counteracts RPA to promote alt-NHEJ. Nat. Struct. Mol. Biol. 24, 1116–1123 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.