Quantifying social organization and political polarization in online platforms

  • 1.

    Sunstein, C. #Republic: Divided Democracy in the Age of Social Media (Princeton Univ. Press, 2018).

  • 2.

    Iyengar, S. & Hahn, K. S. Red media, blue media: evidence of ideological selectivity in media use. J. Commun. 59, 19–39 (2009).

    Article 

    Google Scholar 

  • 3.

    van Alstyne, M. & Brynjolfsson, E. Electronic communities: global villages or cyberbalkanization? In Proc. International Conference on Information Systems 5 https://aisel.aisnet.org/icis1996/5 (1996).

  • 4.

    van Dijck, J. The Culture of Connectivity: A Critical History of Social Media (Oxford Univ. Press, 2013).

  • 5.

    McLuhan, M. The Gutenberg Galaxy: The Making of Typographic Man (Univ. of Toronto Press, 1962).

  • 6.

    Farrell, H. The consequences of the internet for politics. Ann. Rev. Pol. Sci. 15, 35–52 (2012).

    Article 

    Google Scholar 

  • 7.

    Conover, M. D. et al. Political polarization on Twitter. Proc. Intl AAAI Conf. Web Soc. Media 133, 89–96 (2011).

    Google Scholar 

  • 8.

    Bail, C. A. et al. Exposure to opposing views on social media can increase political polarization. Proc. Natl Acad. Sci. USA 115, 9216–9221 (2018).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Martin, T. community2vec: vector representations of online communities encode semantic relationships. In Proc. 2nd Workshop on NLP and Computational Social Science 27–31 (2017).

  • 10.

    Garg, N., Schiebinger, L., Jurafsky, D. & Zou, J. Word embeddings quantify 100 years of gender and ethnic stereotypes. Proc. Natl Acad. Sci. USA 115, E3635–E3644 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V. & Kalai, A. T. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Adv. Neural Inf. Process. Syst. 29, 4349–4357 (2016).

  • 12.

    Caliskan, A., Bryson, J. J. & Narayanan, A. Semantics derived automatically from language corpora contain human-like biases. Science 356, 183–186 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Kozlowski, A. C., Taddy, M. & Evans, J. A. The geometry of culture: analyzing the meanings of class through word embeddings. Am. Soc. Rev. 84, 905–949 (2019).

    Article 

    Google Scholar 

  • 14.

    Shi, F., Shi, Y., Dokshin, F. A., Evans, J. A. & Macy, M. W. Millions of online book co-purchases reveal partisan differences in the consumption of science. Nat. Hum. Behav. 1, 0079 (2017).

    Article 

    Google Scholar 

  • 15.

    Del Vicario, M. et al. Echo chambers: emotional contagion and group polarization on Facebook. Sci. Rep. 6, 37825 (2016).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Pariser, E. The Filter Bubble: What the Internet is Hiding from You (Penguin, 2011).

  • 17.

    Flaxman, S., Goel, S. & Rao, J. M. Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 80, 298–320 (2016).

    Article 

    Google Scholar 

  • 18.

    Bakshy, E., Messing, S. & Adamic, L. A. Exposure to ideologically diverse news and opinion on Facebook. Science 348, 1130–1132 (2015).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 19.

    DiMaggio, P., Evans, J. & Bryson, B. Have American’s social attitudes become more polarized? Am. J. Sociol. 102, 690–755 (1996).

    Article 

    Google Scholar 

  • 20.

    Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A. & Bonneau, R. Tweeting from left to right: is online political communication more than an echo chamber? Psychol. Sci. 26, 1531–1542 (2015).

    Article 

    Google Scholar 

  • 21.

    Adamic, L. A. & Glance, N. The political blogosphere and the 2004 US election: divided they blog. In Proc. 3rd International Workshop on Link Discovery 36–43 (2005).

  • 22.

    An Examination of the 2016 Electorate, Based on Validated Voters https://www.pewresearch.org/politics/2018/08/09/an-examination-of-the-2016-electorate-based-on-validated-voters/ (Pew Research Center, 2018).

  • 23.

    Hawley, G. Making Sense of the Alt-Right (Columbia Univ. Press, 2017).

  • 24.

    Simmel, G. Conflict and the Web of Group Affiliations (Free Press, 1955).

  • 25.

    Breiger, R. L. The duality of persons and groups. Social Forces 53, 181–190 (1974).

    Article 

    Google Scholar 

  • 26.

    Bourdieu, P. Distinction: A Social Critique of the Judgement of Taste (Routledge, 1984).

  • 27.

    Crenshaw, K. W. On Intersectionality: Essential Writings (The New Press, 2017).

  • 28.

    Baumgartner, J., Zannettou, S., Keegan, B., Squire, M. & Blackburn, J. The Pushshift Reddit dataset. In Proc. International AAAI Conference on Web and Social Media 14, 830–839 (2020).

  • 29.

    Reddit privacy policy Reddit https://www.redditinc.com/policies/privacy-policy (2021).

  • 30.

    Kumar, S., Hamilton, W. L., Leskovec, J. & Jurafsky, D. Community interaction and conflict on the web. In Proc. 2018 World Wide Web Conference 933–943 (2018).

  • 31.

    Waller, I. & Anderson, A. Generalists and specialists: using community embeddings to quantify activity diversity in online platforms. In Proc. 2019 World Wide Web Conference 1954–1964 (2019).

  • 32.

    Levy, O. & Goldberg, Y. Dependency-based word embeddings. In Proc. 52nd Annual Meeting of the Association for Computational Linguistics 2, 302–308 (2014).

  • 33.

    Levy, O. & Goldberg, Y. Neural word embedding as implicit matrix factorization. Adv. Neural Inf. Process. Syst. 27, 2177–2185 (2014).

    Google Scholar 

  • 34.

    Schlechtweg, D., Oguz, C. & im Walde, S. S., Second-order co-occurrence sensitivity of skip-gram with negative sampling. Preprint at https://arxiv.org/abs/1906.02479 (2019).

  • Leave a Reply

    Your email address will not be published.