Cyclic evolution of phytoplankton forced by changes in tropical seasonality

  • 1.

    Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–84 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Henderiks, J. & Bollmann, J. The Gephyrocapsa sea surface palaeothermometer put to the test: comparison with alkenone and foraminifera proxies off NW Africa. Mar. Micropaleontol. 50, 161–184 (2004).

    ADS 

    Google Scholar 

  • 3.

    Bendif, E. M. et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. 10, 4234 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Ruddiman, W. F. & Raymo, M. E. Northern Hemisphere climate regimes during the past 3 Ma: possible tectonic connections. Phil. Trans. R. Soc. B. Biol. Sci.318, 411–430 (1988).

  • 5.

    Sepulchre, P. et al. IPSL-CM5A2—an Earth System Model designed for multi-millennial climate simulations. Geosci. Model Dev. 13, 3011–3053 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Aumont, O., Éthé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Broecker, W. & Clark, E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography 24, PA3205 (2009).

    ADS 

    Google Scholar 

  • 8.

    Suchéras-Marx, B. et al. The colonization of the oceans by calcifying pelagic algae. Biogeosciences 16, 2501–2510 (2019).

    ADS 

    Google Scholar 

  • 9.

    Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Young, J. et al. A guide to extant coccolithophore taxonomy. Journal of Nannoplankton Research, Special Issue 1, 1–132 (2003).

    Google Scholar 

  • 11.

    Henderiks, J. Coccolithophore size rules—reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Mar. Micropaleontol. 67, 143–154 (2008).

    ADS 

    Google Scholar 

  • 12.

    Filatov, D. A. Extreme Lewontin’s paradox in ubiquitous marine phytoplankton species. Mol. Biol. Evol. 36, 4–14 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Bown, P. R. Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology 51, 299–308 (2005).

    Google Scholar 

  • 14.

    Si, W. & Rosenthal, Y. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nat. Geosci. 12, 833–838 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Gibbs, S. J., Shackleton, N. & Young, J. Orbitally forced climate signals in mid-Pliocene nannofossil assemblages. Mar. Micropaleontol. 51, 39–56 (2004).

    ADS 

    Google Scholar 

  • 17.

    Beaufort, L. et al. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science 278, 1451–1454 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Chepstow-Lusty, A., Backman, J. & Shackleton, N. J. Comparison of upper Pliocene Discoaster abundance variations from North Atlantic Sites 552, 607, 658, 659 and 662: further evidence for marine plankton responding to orbital forcing. Proc. ODP Sci. Results 108, 121–141 (1989).

  • 19.

    Thierstein, H. R., Geitzenauer, K. R., Molfino, B. & Shackleton, N. J. Global synchroneity of late Quaternary coccolith datum levels : validation by oxygen isotopes. Geology 5, 400–404 (1977).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    Bollmann, J., Baumann, K. H. & Thierstein, H. R. Global dominance of Gephyrocapsa coccoliths in the Late Pleistocene: selective dissolution, evolution, or global environmental change? Paleoceanography 13, 517–529 (1998).

    ADS 

    Google Scholar 

  • 21.

    Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).

    ADS 

    Google Scholar 

  • 22.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    ADS 

    Google Scholar 

  • 23.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    ADS 

    Google Scholar 

  • 24.

    Okada, H. & McIntyre, A. Seasonal distribution of modern Coccolithophorees in the western north Atlantic ocean. Mar. Biol. 54, 319–328 (1979).

    Google Scholar 

  • 25.

    Longhurst, A. Ecological Geography of the Sea Vol. 1 (Academic Press, 1998).

  • 26.

    Sexton, P. F. & Barker, S. Onset of ‘Pacific-style’ deep-sea sedimentary carbonate cycles at the mid-Pleistocene transition. Earth Planet. Sci. Lett. 321–322, 81–94 (2012).

    ADS 

    Google Scholar 

  • 27.

    Rickaby, R. E. M. et al. Coccolith chemistry reveals secular variations in the global ocean carbon cycle? Earth Planet. Sci. Lett. 253, 83–95 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Wang, P., Tian, J. & Lourens, L. J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth Planet. Sci. Lett. 290, 319–330 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Glob. Planet. Change 123, 97–109 (2014).

    ADS 

    Google Scholar 

  • 30.

    Holligan, P. M. et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem. Cycles 7, 879–900 (1993).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Laepple, T. & Lohmann, G. Seasonal cycle as template for climate variability on astronomical timescales. Paleoceanography 24, PA4201 (2009).

    ADS 

    Google Scholar 

  • 32.

    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Ruddiman, W. F., Raymo, M. & McIntyre, A. Matuyama 41,000-year cycles : North Atlantic Ocean and Northern hemisphere ice sheets. Earth Plan. Sci. Lett. 80, 117–129 (1986).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Zeebe, R. E., Westerhold, T., Littler, K. & Zachos, J. C. Orbital forcing of the Paleocene and Eocene carbon cycle. Paleoceanography 32, 440–465 (2017).

    ADS 

    Google Scholar 

  • 35.

    Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • 36.

    Herbert, T. D. A long marine history of carbon cycle modulation by orbital-climatic changes. Proc. Natl Acad. Sci. USA 94, 8362–8369 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Ma, W., Tian, J., Li, Q. & Wang, P. Simulation of long eccentricity (400‐kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: weathering and nutrient response to orbital change. Geophys. Res. Lett. 38, L10701 (2011).

    ADS 

    Google Scholar 

  • 38.

    Archer, D. & Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Beaufort, L. Adaptation of the random settling method for quantitative studies of calcareous nannofossils. Micropaleontology 37, 415–418 (1992).

    Google Scholar 

  • 40.

    Beaufort, L., Barbarin, N. & Gally, Y. Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths. Nat. Protoc. 9, 633–642 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Beaufort, L. & Dollfus, D. Automatic recognition of coccolith by dynamical neural network. Mar. Micropaleont. 51, 57–73 (2004).

    ADS 

    Google Scholar 

  • 42.

    Barbarin, N. La Reconnaissance Automatisée des Nannofossiles Calcaires du Cénozoique. PhD thesis, Aix-Marseille Univ. (2014).

  • 43.

    Beaufort, L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology 51, 289–298 (2005).

    Google Scholar 

  • 44.

    Dollfus, D. Reconaissance des Formes Naturelles par des Réseaux de Neurones Artificiels: Application au Nannoplancton Calcaire. PhD thesis, Aix-Marseille Univ. (1997).

  • 45.

    Dollfus, D. & Beaufort, L. Fat neural network for recognition of position-normalised objects. Neural Netw. 12, 553–560 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 

    Google Scholar 

  • 47.

    de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. C. & Beaufort, L. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294–298 (2005).

    ADS 
    PubMed 

    Google Scholar 

  • 48.

    Shackleton, N. J. & Al, E. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edinb. Earth Sci. 81, 251–261 (1990).

    Google Scholar 

  • 49.

    Carcaillet, J. T., Thouveny, N. & Bourlès, D. L. Geomagnetic moment instability between 0.6 and 1.3 Ma from cosmonuclide evidence. Geophys. Res. Lett. 30, 1792 (2003).

    ADS 

    Google Scholar 

  • 50.

    Beaufort, L. & Party, S. S. MD148/PECTEN (Institut Polaire Francais, 2005).

  • 51.

    Tachikawa, K. et al. The precession phase of hydrological variability in the Western Pacific Warm Pool during the past 400 ka. Quat. Sci. Rev. 30, 3716–3727 (2011).

    ADS 

    Google Scholar 

  • 52.

    Regoli, F. et al. Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods. Paleoceanography 30, 439–455 (2015).

    ADS 

    Google Scholar 

  • 53.

    Clemens, S. C. et al. Indian Monsoon Rainfall. International Ocean Discovery Program Preliminary Report 353 (IODP Publications, 2015).

  • 54.

    Clemens, S. C. et al. Site U1443. In Proc. International Ocean Discovery Program Vol. 353, https://doi.org/10.14379/iodp.proc.353.103.2016 (2016).

  • 55.

    Gebregiorgis, D. et al. Southern Hemisphere forcing of South Asian monsoon precipitation over the past ~1 million years. Nat. Commun. 9, 4702 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Gebregiorgis, D. et al. What can we learn from X-ray fluorescence core scanning data? A paleomonsoon case study. Geochem. Geophys. Geosyst. 21, e2019GC008414 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 57.

    McGrath, S. M., Clemens, S. C., Huang, Y. & Yamamoto, M. Greenhouse gas and ice volume drive Pleistocene Indian summer monsoon precipitation isotope variability. Geophys. Res. Lett. 48, e2020GL092249 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 58.

    Rosenthal, Y. et al. Site U1485. In Proc. International Ocean Discovery Program Vol. 363, https://doi.org/10.14379/iodp.proc.363.106.2018 (2018).

  • 59.

    Beaufort, L., Bassinot, F. C. & Vincent, E. in Reconstructing Ocean History : a Window into the Future (eds Abrantes, F. & Mix, A. C.) 245–272 (Kluwer Academic/Plenum Publisher, 1999).

  • 60.

    Young, J. R., P.R., Bown & J.A., Lees Nannotax3 http://www.mikrotax.org/Nannotax3 (2021).

  • 61.

    Perch-Nielsen, K. in Plankton Stratigraphy Vol. 1 (eds Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.) (CUP Archive, 1989).

  • 62.

    Beaufort, L., Probert, I. & Buchet, N. Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean. Geochem. Geophy. Geosystems 8, Q08011 (2007).

    ADS 

    Google Scholar 

  • 63.

    Lyle, M. Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18, 1059 (2003).

    ADS 

    Google Scholar 

  • 64.

    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos 77, 379 (1996).

    ADS 

    Google Scholar 

  • 65.

    Li, M., Hinnov, L. & Kump, L. Acycle: time-series analysis software for paleoclimate research and education. Comput. Geosci. 127, 12–22 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 66.

    Blackman, R. B. & Tukey, J. W. The measurement of power spectra from the point of view of communications engineering—Part I. Bell Syst. Tech. J. 37, 185–282 (1958).

    Google Scholar 

  • 67.

    Thomson, D. J. Spectrum estimation and harmonic analysis. In Proc. IEEE Vol. 70, 1055–1096 (1982).

  • 68.

    Bollmann, J. Morphology and biogeography of the Gephyrocapsa coccoliths in Holocene sediments. Mar. Micropaleontol. 29, 319–350 (1997).

    ADS 

    Google Scholar 

  • 69.

    Hourdin, F. et al. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim. Dyn. 40, 2167–2192 (2013).

    Google Scholar 

  • 70.

    Krinner, G., Ciais, P., Viovy, N. & Friedlingstein, P. A simple parameterization of nitrogen limitation on primary productivity for global vegetation models. Biogeosciences Discuss. 2, 1243–1282 (2005).

    ADS 

    Google Scholar 

  • 71.

    Madec, G. & Nemo, T. NEMO Ocean Engine. Note du Pôle de modélisation de l’Institut Pierre‐Simon Laplace no. 27 (IPSL, 2015).

  • 72.

    Madec, G. NEMO Reference Manual, Ocean Dynamics Component: NEMO-OPA. Preliminary Version. Note du Pole de modélisation de l’Institut Pierre-Simon Laplace (IPSL, 2008).

  • 73.

    Fichefet, T. & Maqueda, M. M. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res. Oceans 102, 12609–12646 (1997).

    ADS 

    Google Scholar 

  • 74.

    Valcke, S. et al. Coupling technologies for earth system modelling. Geosci. Model Dev. 5, 1589–1596 (2012).

    ADS 

    Google Scholar 

  • 75.

    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Google Scholar 

  • 76.

    Mayorga, E. et al. Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Modelling Softw. 25, 837–853 (2010).

    Google Scholar 

  • 77.

    Bosmans, J. et al. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs. Quat. Sci. Rev. 188, 121–135 (2018).

    ADS 

    Google Scholar 

  • 78.

    Braconnot, P. & Marti, O. Impact of precession on monsoon characteristics from coupled ocean atmosphere experiments: changes in Indian monsoon and Indian ocean climatology. Mar. Geol. 201, 23–34 (2003).

    ADS 

    Google Scholar 

  • 79.

    Prescott, C., Haywood, A., Dolan, A., Hunter, S. & Tindall, J. Indian monsoon variability in response to orbital forcing during the late Pliocene. Glob. Planet. Change 173, 33–46 (2019).

    ADS 

    Google Scholar 

  • 80.

    Erb, M. P. et al. Response of the equatorial pacific seasonal cycle to orbital forcing. J. Clim. 28, 9258–9276 (2015).

    ADS 

    Google Scholar 

  • 81.

    Chen, M.-T. & Beaufort, L. Exploring quaternary variability of the east Asia monsoon, Kuroshio Current, and western Pacific warm pool systems: high-resolution investigations of paleoceanography from the IMAGES III (MD106) IPHIS cruise. Terr. Atmos. Ocean. Sci. 9, 129–142 (1998).

    Google Scholar 

  • 82.

    Gartner, S. Paleoceanography of the mid-Pleistocene. Mar. Micropaleontol. 13, 23–46 (1988).

    ADS 

    Google Scholar 

  • 83.

    Pujos, A. & Giraudeau, J. Distribution of Noelaerhabdaceae (calcareous nannofossils) in the upper and middle Quaternary of the Atlantic and Pacific oceans. Oceanolog. Acta 16, 349–362 (1993).

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *