Antiviral activity of bacterial TIR domains via immune signalling molecules

  • 1.

    Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Burch-Smith, T. M. & Dinesh-Kumar, S. P. The functions of plant TIR domains. Sci. STKE 2007, pe46 (2007).

    Article 

    Google Scholar 

  • 3.

    Wan, L. et al. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799–803 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Horsefield, S. et al. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793–799 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Bayless, A. M. & Nishimura, M. T. Enzymatic functions for Toll/interleukin-1 receptor domain proteins in the plant immune system. Front. Genet. 11, 539 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article 

    Google Scholar 

  • 7.

    Balint-Kurti, P. The plant hypersensitive response: concepts, control and consequences. Mol. Plant Pathol. 20, 1163–1178 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Duxbury, Z. et al. Induced proximity of a TIR signaling domain on a plant–mammalian NLR chimera activates defense in plants. Proc. Natl Acad. Sci. USA 117, 18832–18839 (2020).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Ka, D., Oh, H., Park, E., Kim, J.-H. & Bae, E. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nat. Commun. 11, 2816 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Tzipilevich, E., Pollak-Fiyaksel, O. & Ben-Yehuda, S. Bacteria elicit a phage tolerance response subsequent to infection of their neighbors. Preprint at https://doi.org/10.1101/2021.02.16.428622 (2021).

  • 12.

    Morehouse, B. R. et al. STING cyclic dinucleotide sensing originated in bacteria. Nature 586, 429–433 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Burroughs, A. M. & Aravind, L. Identification of uncharacterized components of prokaryotic immune systems and their diverse eukaryotic reformulations. J. Bacteriol. 202, https://doi.org/10.1128/JB.00365-20 (2020).

  • 14.

    Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Huang, Y., Fliegert, R., Guse, A. H., Lü, W. & Du, J. A structural overview of the ion channels of the TRPM family. Cell Calcium 85, 102111 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Huang, Y., Roth, B., Lü, W. & Du, J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. eLife 8, e50175 (2019).

    Article 

    Google Scholar 

  • 17.

    Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Ye, Q. et al. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol. Cell 77, 709–722 (2020).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Essuman, K. et al. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 28, 421–430 (2018).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Coronas-Serna, J. M. et al. The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog. 16, e1007979 (2020).

    Article 

    Google Scholar 

  • 22.

    Watanabe, S., Shiwa, Y., Itaya, M. & Yoshikawa, H. Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome. J. Bacteriol. 194, 7007 (2012).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Wilson, G. A. & Bott, K. F. Nutritional factors influencing the development of competence in the Bacillus subtilis transformation system. J. Bacteriol. 95, 1439–1449 (1968).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol. Biol. 501, 81–85 (2009).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Zheng, L. et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6, 6001 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010).

    Article 

    Google Scholar 

  • 27.

    Myers, O. D., Sumner, S. J., Li, S., Barnes, S. & Du, X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal. Chem. 89, 8696–8703 (2017).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124 (2020).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Sonn-Segev, A. et al. Quantifying the heterogeneity of macromolecular machines by mass photometry. Nat. Commun. 11, 1772 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *