Sound emission and annihilations in a programmable quantum vortex collider

  • 1.

    Parker, N. G., Proukakis, N. P., Barenghi, C. F. & Adams, C. S. Controlled vortex-sound interactions in atomic Bose-Einstein condensates. Phys. Rev. Lett. 92, 160403 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Barenghi, C. F., Parker, N. G., Proukakis, N. P. & Adams, C. S. Decay of quantised vorticity by sound emission. J. Low Temp. Phys. 138, 629–634 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Tsubota, M., Kobayashi, M. & Takeuchi, H. Quantum hydrodynamics. Phys. Rep. 522, 191–238 (2013).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • 4.

    Vinen, W. F. & Niemela, J. J. Quantum turbulence. J. Low Temp. Phys. 128, 167–231 (2002).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Barenghi, C. F., Skrbek, L. & Sreenivasan, K. R. Introduction to quantum turbulence. Proc. Natl Acad. Sci. USA 111, 4647–4652 (2014).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 6.

    Feynman, R. P. in Progress in Low Temperature Physics Vol. 1, 17–53 (Elsevier, 1955).

  • 7.

    Vinen, W. Quantum turbulence: achievements and challenges. J. Low Temp. Phys. 161, 419–444 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 8.

    Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Ku, M. J. H., Mukherjee, B., Yefsah, T. & Zwierlein, M. W. Cascade of solitonic excitations in a superfluid Fermi gas: from planar solitons to vortex rings and lines. Phys. Rev. Lett. 116, 045304 (2016).

    ADS 

    Google Scholar 

  • 10.

    Bardeen, J. & Stephen, M. J. Theory of the motion of vortices in superconductors. Phys. Rev. 140, A1197–A1207 (1965).

    ADS 

    Google Scholar 

  • 11.

    Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Hall, H. E. & Vinen, W. F. The rotation of liquid helium II – II. The theory of mutual friction in uniformly rotating helium II. Proc. R. Soc. Lond. A 238, 215–234 (1956).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • 13.

    Nore, C., Abid, M. & Brachet, M. E. Kolmogorov turbulence in low-temperature superflows. Phys. Rev. Lett. 78, 3896–3899 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Vinen, W. F. Decay of superfluid turbulence at a very low temperature: the radiation of sound from a Kelvin wave on a quantized vortex. Phys. Rev. B 64, 134520 (2001).

    ADS 

    Google Scholar 

  • 15.

    Vinen, W. F., Tsubota, M. & Mitani, A. Kelvin-wave cascade on a vortex in superfluid 4He at a very low temperature. Phys. Rev. Lett. 91, 135301 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Leadbeater, M., Winiecki, T., Samuels, D. C., Barenghi, C. F. & Adams, C. S. Sound emission due to superfluid vortex reconnections. Phys. Rev. Lett. 86, 1410–1413 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Ruostekoski, J. & Dutton, Z. Engineering vortex rings and systems for controlled studies of vortex interactions in Bose-Einstein condensates. Phys. Rev. A 72, 063626 (2005).

    ADS 

    Google Scholar 

  • 18.

    Villois, A., Proment, D. & Krstulovic, G. Irreversible dynamics of vortex reconnections in quantum fluids. Phys. Rev. Lett. 125, 164501 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Kivotides, D., Vassilicos, J. C., Samuels, D. C. & Barenghi, C. F. Kelvin waves cascade in superfluid turbulence. Phys. Rev. Lett. 86, 3080–3083 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Kozik, E. & Svistunov, B. Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett. 92, 035301 (2004).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    L’vov, V. S. & Nazarenko, S. Spectrum of Kelvin-wave turbulence in superfluids. JETP Lett. 91, 428–434 (2010).

    ADS 

    Google Scholar 

  • 22.

    Popov, V. N. Quantum vortices and phase transitions in Bose systems. Sov. Phys. JETP 37, 341–345 (1973).

    ADS 

    Google Scholar 

  • 23.

    Ambegaokar, V., Halperin, B. I., Nelson, D. R. & Siggia, E. D. Dynamics of superfluid films. Phys. Rev. B 21, 1806–1826 (1980).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Arovas, D. P. & Freire, J. Dynamical vortices in superfluid films. Phys. Rev. B 55, 1068–1080 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Bradley, D. I. et al. Direct measurement of the energy dissipated by quantum turbulence. Nat. Phys. 7, 473–476 (2011).

    CAS 

    Google Scholar 

  • 26.

    Fonda, E., Meichle, D. P., Ouellette, N. T., Hormoz, S. & Lathrop, D. P. Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl Acad. Sci. USA 111, 4707–4710 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Walmsley, P., Zmeev, D., Pakpour, F. & Golov, A. Dynamics of quantum turbulence of different spectra. Proc. Natl Acad. Sci. USA 111, 4691–4698 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Caroli, C., De Gennes, P. & Matricon, J. Bound Fermion states on a vortex line in a type II superconductor. Phys. Lett. 9, 307–309 (1964).

    ADS 
    MATH 

    Google Scholar 

  • 29.

    Kopnin, N. B. & Salomaa, M. M. Mutual friction in superfluid 3He: effects of bound states in the vortex core. Phys. Rev. B 44, 9667–9677 (1991).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Nygaard, N., Bruun, G. M., Clark, C. W. & Feder, D. L. Microscopic structure of a vortex line in a dilute superfluid Fermi gas. Phys. Rev. Lett. 90, 210402 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Sensarma, R., Randeria, M. & Ho, T.-L. Vortices in superfluid Fermi gases through the BEC to BCS crossover. Phys. Rev. Lett. 96, 090403 (2006).

    ADS 

    Google Scholar 

  • 32.

    Silaev, M. A. Universal mechanism of dissipation in Fermi superfluids at ultralow temperatures. Phys. Rev. Lett. 108, 045303 (2012).

    ADS 

    Google Scholar 

  • 33.

    Kwon, W. J., Moon, G., Choi, J.-Y., Seo, S. W. & Shin, Y.-I. Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. Phys. Rev. A 90, 063627 (2014).

    ADS 

    Google Scholar 

  • 34.

    Johnstone, S. P. et al. Evolution of large-scale flow from turbulence in a two-dimensional superfluid. Science 364, 1267–1271 (2019).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • 35.

    Liu, X.-P. et al. Universal dynamical scaling of quasi-two-dimensional vortices in a strongly interacting fermionic superfluid. Phys. Rev. Lett. 126, 185302 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Rooney, S. J., Blakie, P. B., Anderson, B. P. & Bradley, A. S. Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein condensates. Phys. Rev. A 84, 023637 (2011).

    ADS 

    Google Scholar 

  • 37.

    Neely, T. W., Samson, E. C., Bradley, A. S., Davis, M. J. & Anderson, B. P. Observation of vortex dipoles in an oblate Bose-Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Park, J. W., Ko, B. & Shin, Y. Critical vortex shedding in a strongly interacting fermionic superfluid. Phys. Rev. Lett. 121, 225301 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Samson, E. C., Wilson, K. E., Newman, Z. L. & Anderson, B. P. Deterministic creation, pinning, and manipulation of quantized vortices in a Bose-Einstein condensate. Phys. Rev. A 93, 023603 (2016).

    ADS 

    Google Scholar 

  • 40.

    Donnelly, R. J. Quantized Vortices in Helium II (Cambridge Univ. Press, 1991).

  • 41.

    Parker, N. G. Numerical Studies of Vortices and Dark Solitons in Atomic Bose-Einstein Condensates. PhD thesis, Univ. Durham (2004).

  • 42.

    Bulgac, A. & Yu, Y. Vortex state in a strongly coupled dilute atomic fermionic superfluid. Phys. Rev. Lett. 91, 190404 (2003).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Chien, C.-C., He, Y., Chen, Q. & Levin, K. Ground-state description of a single vortex in an atomic Fermi gas: from BCS to Bose–Einstein condensation. Phys. Rev. A 73, 041603 (2006).

    ADS 

    Google Scholar 

  • 44.

    Simonucci, S., Pieri, P. & Strinati, G. C. Temperature dependence of a vortex in a superfluid Fermi gas. Phys. Rev. B 87, 214507 (2013).

    ADS 

    Google Scholar 

  • 45.

    Jones, C. A. and Roberts, P. H. Motions in a Bose condensate. IV. Axisymmetric solitary waves. J. Phys. A 15, 2599–2619 (1982).

    ADS 

    Google Scholar 

  • 46.

    Jackson, B., Proukakis, N. P., Barenghi, C. F. & Zaremba, E. Finite-temperature vortex dynamics in Bose-Einstein condensates. Phys. Rev. A 79, 053615 (2009).

    ADS 

    Google Scholar 

  • 47.

    Moon, G., Kwon, W. J., Lee, H. & Shin, Y.-I. Thermal friction on quantum vortices in a Bose-Einstein condensate. Phys. Rev. A 92, 051601 (2015).

    ADS 

    Google Scholar 

  • 48.

    Wittmer, P., Schmied, C.-M., Gasenzer, T. & Ewerz, C. Vortex motion quantifies strong dissipation in a holographic superfluid. Phys. Rev. Lett. 127, 101601 (2021).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • 49.

    Aioi, T., Kadokura, T., Kishimoto, T. & Saito, H. Controlled generation and manipulation of vortex dipoles in a Bose-Einstein condensate. Phys. Rev. X 1, 021003 (2011).

    Google Scholar 

  • 50.

    Stagg, G. W., Allen, A. J., Parker, N. G. & Barenghi, C. F. Generation and decay of two-dimensional quantum turbulence in a trapped Bose-Einstein condensate. Phys. Rev. A 91, 013612 (2015).

    ADS 

    Google Scholar 

  • 51.

    Groszek, A. J., Simula, T. P., Paganin, D. M. & Helmerson, K. Onsager vortex formation in Bose-Einstein condensates in two-dimensional power-law traps. Phys. Rev. A 93, 043614 (2016).

    ADS 

    Google Scholar 

  • 52.

    Baggaley, A. W. & Barenghi, C. F. Decay of homogeneous two-dimensional quantum turbulence. Phys. Rev. A 97, 033601 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Cidrim, A., dos Santos, F. E. A., Galantucci, L., Bagnato, V. S. & Barenghi, C. F. Controlled polarization of two-dimensional quantum turbulence in atomic Bose-Einstein condensates. Phys. Rev. A 93, 033651 (2016).

    ADS 

    Google Scholar 

  • 54.

    Karl, M. & Gasenzer, T. Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas. New J. Phys. 19, 093014 (2017).

    ADS 

    Google Scholar 

  • 55.

    Yang, G., Zhang, S. & Han, W. Oblique collisions and catching-up phenomena of vortex dipoles in a uniform Bose–Einstein condensate. Phys. Scr. 94, 075006 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Tylutki, M. & Wlazłowski, G. Universal aspects of vortex reconnections across the BCS-BEC crossover. Phys. Rev. A 103, L051302 (2021).

    CAS 

    Google Scholar 

  • 57.

    Reeves, M. T., Billam, T. P., Anderson, B. P. & Bradley, A. S. Inverse energy cascade in forced two-dimensional quantum turbulence. Phys. Rev. Lett. 110, 104501 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    White, A. C., Anderson, B. P. & Bagnato, V. S. Vortices and turbulence in trapped atomic condensates. Proc. Natl Acad. Sci. USA 111, 4719–4726 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Simula, T., Davis, M. J. & Helmerson, K. Emergence of order from turbulence in an isolated planar superfluid. Phys. Rev. Lett. 113, 165302 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Kwon, W. J., Kim, J. H., Seo, S. W. & Shin, Y. Observation of von Kármán vortex street in an atomic superfluid gas. Phys. Rev. Lett. 117, 245301 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Seo, S. W., Ko, B., Kim, J. H. & Shin, Y. Observation of vortex-antivortex pairing in decaying 2D turbulence of a superfluid gas. Sci. Rep. 7, 4587 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Gauthier, G. et al. Giant vortex clusters in a two-dimensional quantum fluid. Science 364, 1264–1267 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 63.

    Burchianti, A. et al. Connecting dissipation and phase slips in a Josephson junction between fermionic superfluids. Phys. Rev. Lett. 120, 025302 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Mukherjee, B. et al. Homogeneous atomic Fermi gases. Phys. Rev. Lett. 118, 123401 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Hueck, K. et al. Two-dimensional homogeneous Fermi gases. Phys. Rev. Lett. 120, 060402 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Del Pace, G., Kwon, W. J., Zaccanti, M., Roati, G. & Scazza, F. Tunneling transport of unitary fermions across the superfluid transition. Phys. Rev. Lett. 126, 055301 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS-BEC crossover. Phys. Rev. A 75, 023610 (2007).

    ADS 

    Google Scholar 

  • 68.

    Pini, M., Pieri, P., Jager, M., Denschlag, J. H. & Strinati, G. C. Pair correlations in the normal phase of an attractive Fermi gas. New J. Phys. 22, 083008 (2020).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • 69.

    Kwon, W. J. et al. Strongly correlated superfluid order parameters from dc Josephson supercurrents. Science 369, 84–88 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Kwon, W. J., Seo, S. W. & Shin, Y.-I. Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate. Phys. Rev. A 92, 033613 (2015).

    ADS 

    Google Scholar 

  • 71.

    Gertjerenken, B., Kevrekidis, P. G., Carretero-González, R. & Anderson, B. P. Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate: a numerical study. Phys. Rev. A 93, 023604 (2016).

    ADS 

    Google Scholar 

  • 72.

    Ku, M. J. H. et al. Motion of a solitonic vortex in the BEC-BCS crossover. Phys. Rev. Lett. 113, 065301 (2014).

    ADS 

    Google Scholar 

  • 73.

    Wilson, K. E., Newman, Z. L., Lowney, J. D. & Anderson, B. P. In situ imaging of vortices in Bose-Einstein condensates. Phys. Rev. A 91, 023621 (2015).

    ADS 

    Google Scholar 

  • 74.

    Pethick, C. J. & Smith, H. Bose-Einstein Condensation in Dilute Gases (Cambridge Univ. Press, 2002).

  • 75.

    Rakonjac, A. et al. Measuring the disorder of vortex lattices in a Bose-Einstein condensate. Phys. Rev. A 93, 013607 (2016).

    ADS 

    Google Scholar 

  • 76.

    Iordanskii, S. V. Mutual friction force in a rotating Bose gas. Sov. Phys. JETP 22, 160–167 (1966).

    ADS 

    Google Scholar 

  • 77.

    Schwarz, K. W. Three-dimensional vortex dynamics in superfluid 4He: homogeneous superfluid turbulence. Phys. Rev. B 38, 2398–2417 (1988).

    ADS 
    CAS 

    Google Scholar 

  • 78.

    Billam, T. P., Reeves, M. T. & Bradley, A. S. Spectral energy transport in two-dimensional quantum vortex dynamics. Phys. Rev. A 91, 023615 (2015).

    ADS 

    Google Scholar 

  • 79.

    Kim, J. H., Kwon, W. J. & Shin, Y. Role of thermal friction in relaxation of turbulent Bose-Einstein condensates. Phys. Rev. A 94, 033612 (2016).

    ADS 

    Google Scholar 

  • 80.

    Skaugen, A. & Angheluta, L. Origin of the inverse energy cascade in two-dimensional quantum turbulence. Phys. Rev. E 95, 052144 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Stockdale, O. R. et al. Universal dynamics in the expansion of vortex clusters in a dissipative two-dimensional superfluid. Phys. Rev. Res. 2, 033138 (2020).

    CAS 

    Google Scholar 

  • 82.

    Berloff, N. G. Padé approximations of solitary wave solutions of the Gross–Pitaevskii equation. J. Phys. A 37, 11729 (2004).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • 83.

    Rorai, C., Skipper, J., Kerr, R. M. & Sreenivasan, K. R. Approach and separation of quantised vortices with balanced cores. J. Fluid Mech. 808, 641–667 (2016).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • 84.

    Villois, A., Proment, D. & Krstulovic, G. Universal and nonuniversal aspects of vortex reconnections in superfluids. Phys. Rev. Fluids 2, 044701 (2017).

    ADS 

    Google Scholar 

  • 85.

    Galantucci, L., Baggaley, A. W., Parker, N. G. & Barenghi, C. F. Crossover from interaction to driven regimes in quantum vortex reconnections. Proc. Natl Acad. Sci. USA 116, 12204–12211 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Numasato, R., Tsubota, M. & L’vov, V. S. Direct energy cascade in two-dimensional compressible quantum turbulence. Phys. Rev. A 81, 063630 (2010).

    ADS 

    Google Scholar 

  • 87.

    Horng, T.-L., Hsueh, C.-H., Su, S.-W., Kao, Y.-M. & Gou, S.-C. Two-dimensional quantum turbulence in a nonuniform Bose-Einstein condensate. Phys. Rev. A 80, 023618 (2009).

    ADS 

    Google Scholar 

  • 88.

    Griffin, A., Nazarenko, S. & Proment, D. Breaking of Josephson junction oscillations and onset of quantum turbulence in Bose–Einstein condensates. J. Phys. A 53, 175701 (2020).

    ADS 
    MathSciNet 

    Google Scholar 

  • 89.

    Xhani, K. et al. Critical transport and vortex dynamics in a thin atomic Josephson junction. Phys. Rev. Lett. 124, 045301 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 90.

    Xhani, K. et al. Dynamical phase diagram of ultracold Josephson junctions. New J. Phys. 22, 123006 (2020).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *